Subset Sum Calculator

The Subset Sum Calculator is used to solve the classic Subset Sum Problem. It efficiently helps users find all combinations of elements (i.e., subsets) from a given set of numbers, such that the sum of all numbers within that subset precisely equals a pre-set target value.

Here Is Calculate Result

What is Subset Sum Calculator?

The Subset Sum Calculator addresses a decision problem or an optimization problem. It does not have a single “mathematical formula” like an algebraic equation.Instead, it is defined and solved based on mathematical definitions and algorithmic logic.

Mathematical Definition of the Subset Sum Problem

The goal of the Subset Sum problem is: given a set $S$ , and a target value $T$, determine whether there exists a subset S'⊆Ssuch that the sum of all elements in S'equals $T$

Problem definition in symbolic form

Given:
a set (or list) of numbers S = \{x_1, x_2, \dots, x_n\}
a target value $T$
The goal is to find all subsets S\' \subseteq Sthat satisfy the following condition:
$$\sum_{x_i \in S\'} x_i = T$$

什么是子集求和计算器

子集求和计算器(Subset Sum Calculator)解决的是一个决策问题 (Decision Problem) 或优化问题 (Optimization Problem),它本身没有一个像代数方程那样的单一“数学公式”。相反,它是基于数学定义和算法逻辑来描述的。

子集求和问题的数学定义:
子集和问题的目标是:给定一个集合$S$, 和一个目标值$T$, 确定是否存在一个子集$S'⊆S$, 使得S'中所有元素的和等于$T$

子集求和的数学符号定义

给定:
1.一个候选数字集合 S = \{x_1, x_2, \dots, x_n\}
2.一个目标值 $T$
目的是找出所有子集 $S\' \subseteq S$ 满足下面的条件:
$$\sum_{x_i \in S\'} x_i = T$$

© 2025 www.combinationsumcalculator.net All rights reserved.